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We study emergent dynamics in a viscous drop subject to interfacial nematic activity. Using hy-
drodynamic simulations, we show how the interplay of nematodynamics, activity-driven flows and
surface deformations gives rise to a sequence of self-organized behaviors of increasing complexity,
from periodic braiding motions of topological defects to chaotic defect dynamics and active turbu-
lence, along with spontaneous shape changes and translation. Our findings recapitulate qualitative
features of experiments and shed light on the mechanisms underpinning morphological dynamics in
active interfaces.

Living materials are characterized by their ability to
continuously transform chemical energy into mechanical
work at the microscale. When confined to deformable sur-
faces, these active materials demonstrate a myriad of dy-
namic behaviors. Biological surfaces also often exhibit
intrinsic degrees of freedom that correspond to in-plane
order (such as nematic or polar), which facilitate long-
range hydrodynamic interactions, resulting in the emer-
gence of self-organized spatiotemporal patterns. This is
a fundamental feature of various biological systems, in-
cluding the cell cortex and confluent eukaryotic cells, and
plays a crucial role in their functional properties. Here,
we focus on systems with nematic symmetry. Experimen-
tal observations indicate the emergence of nematic or-
der during cytokinesis [1, 2]. Nematic alignment has also
been evidenced in different stages of tissue morphogen-
esis when individual cells exhibit a preferred elongation
axis [3–5].

Biological processes from subcellular to multicellular
scales often occur on self-deforming surfaces with various
mechanical properties. Examples include shape changes
during polarization, migration and division in cells, and
apical constrictions in epithelial morphogenesis [6, 7].
Understanding these morphological dynamics necessi-
tates theoretical models that account for the three-way
coupling between surface deformations, in-plane order,
and flow [8–10]. Recent studies have probed the mecha-
nisms driving shape changes in cells and epithelial tissues,
advancing our understanding of these processes [11–13].

The central motif of these biological systems has also
been utilized to create synthetic soft active materials [14–
16]. In pioneering work, Keber et al. [14] assembled a
shape-shifting lipid vesicle by encapsulating a film of mi-
crotubules and kinesin motors to its inner surface. Un-
derstanding the interplay between orientational order,
activity-induced flow, and substrate geometry has been
the subject of several studies thereafter. Various mod-
els have probed the role of surface curvature on the dy-
namics of topological defects in active fluids confined to
rigid surfaces of various topologies [17–21], yet the role of
interfacial deformations and their coupling to bulk flow

remains poorly understood.

In this Letter, we report on the spontaneous dynam-
ics of a viscous drop driven out of equilibrium due to
interfacial nematic activity. We show that the interplay
between the flow inside and outside the drop, surface
transport of the nematic field and surface deformations,
gives rise to a sequence of self-organized behaviors and
symmetry-breaking phenomena of increasing complexity.
Our results recapitulate the qualitative features of ex-
periments [14], both in the small and finite deformation
regimes. Under small deformations, the dynamics is char-
acterized by the braiding motion of topological defects
around the drop, giving rise to well-known braiding pat-
terns at different activity levels. The asymmetry induced
under finite deformations results in translational motion
of the drop. Under strong activity, a transition to active
turbulence is also observed.

We model a viscous drop occupying volume V − and
suspended in another viscous fluid V + [Fig. 1(a)]. The in-
terface ∂V is defined by a smooth surface r = r(s1, s2) ∈
R3 parameterized by coordinates (s1, s2). Tangent vec-
tors gi = ∂ir (∂i := ∂/∂si, i = 1, 2), along with the
unit normal v = (g1 × g2)/|g1 × g2|, form a local coor-
dinate system with surface metric tensor gij = gi · gj .
The drop is initially spherical with radius R. A mono-
layer of active nematic particles is constrained to ∂V
and drives the system out of equilibrium by inducing
flows inside and outside the drop and by causing defor-
mations. We use a coarse-grained representation of the
nematic field in terms of the tensor Q = Qij gigj where
Qij = S(ninj−gij/2). Here, n = nigi (n

ini = 1) denotes
the local nematic director, and S ∈ [0, 1] is the scalar or-
der parameter characterizing the strength of alignment.
The Q tensor evolves by the nematodynamic equation
[9, 21, 23]

DtQ
ij =

1

Γ
Hij + ζŨ ij , x ∈ ∂V. (1)

DtQ
ij is a co-rotational material derivative embodying

advection and rotation of the nematic by the surface flow
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FIG. 1. (a) Schematic of the model system. (b) Snapshots of the director field and scalar order parameter shown as a colormap
during: (left) braiding motion under small deformations, (middle) braiding motion with shape-shifting behavior, and (right)
chaotic regime with finite deformations. Also see Videos 1–3 of the SM [22]. (c) Tetrahedral (left) and planar (right) defect
arrangements. (d,e) Evolution of the average angle α for two systems with Pe = 0.3 (d) and Pe = 3 (e). The red and blue lines
denote planar (120◦) and tetrahedral (109.5◦) configurations, respectively. (Ca, ℓc) = (0.01, 0.32) in (d,e).

with velocity u = uigi + unv:

DtQ
ij = ∂tQ

ij + uk ∇kQ
ij + un (C

j
kQ

ik + Ci
kQ

kj)

+ ωn (ϵ
ikQj

k + ϵjkQi
k),

(2)

where ∇k is the covariant derivative with respect to sk,
Cij = −∂j∂ix ·n is the curvature tensor, ωn = 1

2ϵ
ij∇iuj

is the normal vorticity, and ϵij = v · (gi×gj) is the Levi-
Civita tensor. The molecular tensor Hij = −δF/δQij

describes orientational relaxation in the nematic mono-
layer, with Γ the rotational viscosity. It derives from the
Landau–de Gennes free energy,

F=

∫
∂V

dA
(ks
2

[
dQijQ

ij+c(QijQ
ij)2

]
+
ke
2
∇iQjk∇iQjk

)
,

(3)
which accounts for short-range and elastic interactions
in the nematic monolayer [24, 25]. Here, ks and ke
are steric and elastic phenomenological constants, and
d = a+ b

3S + c
6S

2 where a, b and c are normalized ther-
motropic parameters. We assume that the characteristic
size of a nematic particle is small compared to the lo-
cal radius of curvature of the interface, and thus neglect
any coupling between the extrinsic curvature and the ne-
matic tensor in Eq. (3). Finally, alignment by the flow is
captured by ζŨ ij where ζ is the flow alignment parame-
ter or Bretherton constant [26], and Ũ ij is the traceless
strain-rate tensor:

Ũ ij = U ij− 1
2U

k
k g

ij , U ij = 1
2 (∇

iuj+∇jui)+Cijun. (4)

Neglecting inertial effects and gravity, the flow inside
and outside the drop is governed by the Stokes equations:

µ±∇2u± −∇p± = 0, ∇ · u± = 0, x ∈ V ±. (5)

The velocity is continuous across ∂V and vanishes far
away. The nematic particles exert an active surface stress
T a = ξQ on their surrounding, leading to fluid motion
and deformations. The constant ξ captures the biochem-
ical activity, with ξ < 0 for extensile systems as in the
experiments of Keber et al. [14]. The local force balance
along the tangential and normal directions on the drop
surface ∂V reads

fh,j + ξ∇iQ
ij = 0, (6)

fh
n − γ Ck

k − ξ Cij Q
ij = 0, (7)

where γ is the uniform surface tension. The jump in hy-

drodynamic tractions across ∂V is fh = v · [T h
]+
−, where

T h = −pI +µ
(
∇u+∇uT

)
is the Newtonian stress ten-

sor. We solve Eqs. (1)–(7) numerically using a custom
spectral boundary integral solver [27, 28], where all phys-
ical variables such as shape, velocity, and Q tensor are
represented as truncated series of spherical surface har-
monics (see Supplemental Material (SM) [22] for details).
Dimensional analysis of the governing equations yields

four dimensionless groups in addition to ζ. The active
capillary number Ca = |ξ|R/γ compares the strength of
active stresses to surface tension and governs the magni-
tude of deviations from the spherical shape [Fig. 1(b)].
The active Péclet number Pe = |ξ|Γ/(ksµ+R2) charac-
terizes the strength of convective vs relaxational fluxes
in Eq. (1). The balance between short-range and elastic
interactions in the nematic monolayer defines a dimen-
sionless coherence length ℓc = R−1

√
ke/ks, or effective

distance over which topological defects affect the nematic
field on the scale of the drop. Finally, the viscosity ratio
between the inner and outer fluids is λ = µ−/µ+. We
found that varying λ has little effect on the dynamics,
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and all results shown here are for λ = 1.

First, we focus on the regime of Ca ≪ 1 to isolate the
effect of deformations. In this regime, the behavior of the
system is governed by two parameters: the activity level
captured by Pe, and nematic elasticity captured by ℓc.
Active stresses drive the system out of equilibrium while
nematic elasticity tends to stabilizes it. Indeed, as ne-
matic elasticity becomes stronger, the coherence length
increases (ℓ2c ∝ ke), resulting in a more constrained ar-
rangement of the topological defects that repel one an-
other. Given the spherical topology of the interface, the
net topological charge of the nematic field is fixed at +2,
and for small to moderate activity levels (0 < Pe ≲ 5),
the system exhibits four +1/2 defects [Fig. 1(b), left].

Under small activity levels, the defects remain sta-
tionary and occupy the vertices of a regular tetrahedron
(Fig. S2 [22]). Beyond a critical value Pec, a transition
occurs to an unsteady regime marked by the periodic
motion of the defects (see Video 1 [22]). Each defect is
set into motion by the activity-induced flow, which influ-
ences the nematic field. In agreement with experimental
observations [14], the defect arrangement oscillates be-
tween tetrahedral and planar configurations, as shown in
Fig. 1(c-e), where α = 1/6

∑4
i<j αij denotes the average

of all pairwise angles αij between the four defects.

The spatiotemporal defect trajectories can be analyzed
and interpreted using the concept of braids [29]. We first
map the defect trajectories from the spherical surface of
the drop to its two-dimensional mid-plane using the stere-
ographic projection, where one reference defect is taken
to be at the sphere pole and therefore mapped to infinity
[30, 31]. When projected along a specific direction, the
remaining three defect trajectories display a sequence of
crossings that defines a braid b [Fig. 2(a)]. Each cross-
ing event is expressed in terms of elementary generators
σi, i ∈ {1, . . . , n− 1}, of the n-particle braid group with
n = 3 [29]. The generator σi denotes the clockwise ex-
change of defect i with defect i + 1 on the projection
line, while σ−1

i corresponds to their counterclockwise ex-
change. The complexity of a given braid and its mixing
efficiency can be quantified by the exponential stretch-
ing rate of material curves in the associated flow. This is
determined through the braid’s topological entropy and
finite-time braiding exponent (FTBE) for periodic and
aperiodic trajectories, respectively [32–34] (see SM for
details [22]).

For activity levels close to Pec within the unsteady
regime, the defect motion is periodic and characterized
by a single time scale, as evidenced by the presence of
a single peak in the fast Fourier transform (FFT) of
the average angle α (Fig. S4 [22]). The defect trajecto-
ries follow a specific pattern known as the golden braid
[Fig. 2(a,b)], described by the braid B1 = (b1)

k
, where

b1 = σ1 σ
−1
2 σ1 σ1 σ2 σ

−1
1 σ−1

2 σ−1
2 . Its topological entropy

is given by h(b1) = 6 log ϕ1, where ϕ1 = (1 +
√
5)/2 de-

notes the golden ratio [35]. As Pe is further increased,

nonlinear effects become more pronounced, leading to the
emergence of a second time scale. This is manifested in
the FFT spectrum of α, which exhibits two distinct peaks
(Fig. S5 [22]). Eventually, the braiding pattern under-
goes a transition from the golden braid to the silver braid
B2 = (b2)

k
, where b2 = σ1 σ2 σ

−1
1 σ−1

2 σ1 σ
−1
2 . Its topo-

logical entropy is h(b2) = 2 log ϕ2, where ϕ2 = 1 +
√
2 is

the silver ratio [36]. Schematic diagrams of the golden and
silver braids are shown in Fig. 2(b). The efficiency of a
periodic braid in increasing entropy can be quantified by
its topological entropy by generator (TEPG) [36]. Com-
paring the TEPG of the golden and silver braids shows
that TEPG(b1) ≈ 1.23TEPG(b2), i.e., the transition to
the silver braid with increasing Pe causes a decrease in
TEPG.

As the activity level is further increased, a transition
from periodic to aperiodic dynamics is observed. This
regime, referred to as mix braiding, is characterized by
the absence of a specific braiding pattern, with defect tra-
jectories displaying irregular and chaotic behavior. The
FFT spectrum of α in this regime is broad and displays
multiple peaks, a signature of highly nonlinear dynamics
(Fig. S6 [22]). Figure 2(c) shows 3D defect trajectories
in drops with golden, silver, and mix braiding patterns,
providing visual evidence of the increasing complexity
with higher activity. To characterize the different braid-
ing patterns and quantify their complexities in the non-
periodic case, we calculate the FTBE of defect trajecto-
ries as a function of Pe and ℓc in Fig. 2(d) [34, 37]. The
FTBE generally shows an increasing trend with respect
to Pe, indicating that higher activity levels lead to more
complex dynamics. However, the transition from golden
to silver braiding is accompanied by a decrease in FTBE,
consistent with the decrease in TEPG discussed above.
This reduction in the FTBE is particularly intriguing as
it occurs despite the heightened activity.

To elucidate this effect, we analyze the drop’s energet-
ics in the unsteady regime. The active power expended by
the surface nematic is defined as Pa(t) =

∫
∂V

fa · uds,
where fa = ξ∇iQ

ijgj − ξCij Q
ijv is the interfacial ac-

tive traction and u the interfacial velocity. As shown in
Fig. 2(e), the time-averaged active power, denoted by
P̄a = ⟨Pa⟩t, is an ascending function of activity except
during the transition from the golden to silver braid,
where it suddenly drops. This indicates that the increase
in TEPG with Pe in the golden braiding regime comes
at a higher energetic cost, and suggests that the spon-
taneous transition to the silver braid is energetically fa-
vorable. Note that, under small deformations, the ac-
tive power is dissipated primarily through viscous effects
within the bulk, with negligible contributions from cap-
illarity (see SM for details [22]).

We highlight the stabilizing effect of nematic elastic-
ity as captured by ℓc. The critical Péclet number Pec for
the transition from equilibrium to periodic braiding rises
from Pec ≈ 0.2 to 1.2 as the coherence length is varied
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FIG. 2. (a) Spatiotemporal trajectories (X,Y, t) of projected defects for a drop with (Pe, ℓc) = (0.3, 0.16) during golden braiding
pattern (see SM for details [22]). (b) Diagrams of golden (triangle) and silver (square) braids. (c) Defect trajectories in 3D
for active drops with ℓc = 0.16 in the golden (left), silver (middle), and mix (right) braiding regimes at different values of Pe.
The time interval between the first and last data points is ∆t = 50/f1, where f1 corresponds to the peak frequency in the FFT
spectrum of α. (d) FTBE of defect trajectories, and (e) average active power P̄a for a spherical active drop, as functions of Pe
and ℓc. The markers identify golden, silver, and mix braiding regimes. Ca = 0.01 in all cases.

from ℓc = 0.16 to 0.32. The onset of aperiodic defect mo-
tions (mix braiding regime) is also delayed under larger
coherence lengths. According to Fig. 2(d,e), for a given
Pe, both the FTBE and the active power are consistently
lower at the larger coherence length. Indeed, the leading
effect of nematic elasticity is to repel topological defects,
which fosters more organized and constrained defect dy-
namics and delays the transition to chaotic motion.

Allowing for finite deformations (Ca > 0) further in-
creases the complexity of the dynamics. In this regime,
the active drop undergoes spontaneous shape changes in
the form of breathing motions as the defects traverse its
surface [Fig. 1(b), middle] (See Video 2 [22]). These de-
formations, in turn, impact the nematodynamics, estab-
lishing a three-way feedback loop between shape, nematic
field, and flow. Notably, we observe an increase in Pec at
higher capillary numbers, indicating that elevated activ-
ity levels are required for defects to overcome the energy
barriers induced by deformations.

For the smaller coherence length ℓc = 0.16, we ob-
serve that under moderate values of Pe > Pec, four de-
fects exhibit braiding motion similar to the behavior ob-
served in the small deformation limit. Concurrently, the
drop undergoes spontaneous shape changes under the in-

fluence of active stresses. At long times, we find that
the drop eventually reaches an equilibrium state with
a steady deformed shape and defect configuration. This
behavior is only observed up to a second critical Péclet
number Peeq > Pec, beyond which the system transitions
to a chaotic regime characterized by the rapid creation
and annihilation of defects around the drop [Fig. 1(b),
right] (also see Video 3 and Fig. S9 [22]). The newly
formed defects emerge as pairs with ±1/2 topological
charges, maintaining a constant net topological charge.
The dynamics in this regime resembles the active tur-
bulence previously observed in nematic materials on flat
and curved surfaces [21, 38–41]. For the larger coherence
length ℓc = 0.32, the system reaches equilibrium over
long times for all explored Péclet numbers (0 < Pe < 12)
due to the stabilizing effect of nematic elasticity.

Nonlinearities introduced by finite deformations am-
plify the asymmetry in the nematic field and defect con-
figuration. This asymmetry gives rise to a net trans-
lational component in the velocity field. The volume-
averaged velocity of the drop of volume Vd is calculated
as U(t) = 1

Vd

∫
V −udυ, and we denote by Ū = |⟨U⟩t| the

magnitude of its time average. We observe that the trans-
lational velocity is orders of magnitude larger compared
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FIG. 3. Time-averaged translational velocity as a function of
Pe for Ca = 0.5. Blue and brown lines correspond to ℓc = 0.16
and 0.32, respectively. Filled markers indicate cases where
more than four defects were observed. Insets show snapshots
of the drop corresponding to the boxed markers.

to the regime of Ca ≪ 1, underscoring the role of de-
formations in breaking the system’s symmetry. Figure 3
shows Ū vs Pe for Ca = 0.5. For ℓc = 0.16, Ū first exhibits
a sharp increase with Pe when four defects are present. It
then reaches a plateau as Pe is further increased and the
drops enters the chaotic regime where additional defects
are created. Similar trends are observed for ℓc = 0.32,
although the increase in Ū with Pe is delayed due to the
stabilizing effect of nematic elasticity, which promotes
more symmetric shapes.

Using numerical simulations, we have analyzed the dy-
namics of a deformable viscous drop subject to interfa-
cial nematic activity. Our results highlight the complex
interplay of nematodynamics, active fluid flows, and in-
terfacial mechanics, and point to a wide range of emer-
gent dynamics depending on the importance of active
stresses relative to viscous and capillary stresses. In the
low deformation regime, the dynamics is characterized by
four +1/2 defects whose trajectories can be described in
terms of braids of increasing complexity. At finite capil-
lary numbers, breathing deformations and translational
motion emerge, as well as an active turbulent regime
with continuous generation and annihilation of defect
pairs. Our observations are all consistent with past ex-
periments on active vesicles [14]. We note that the anal-
ysis of braiding motions only provides qualitative infor-
mation on the system’s mixing efficiency, and is limited
to regimes with four topological defects, where treating
defects as material points is a reasonable approximation.
A more in-depth characterization of the organizing role
of activity-induced flows may rely on an analysis of La-
grangian coherent structures and associated finite-time
Lyapunov exponents, which have recently been applied
to identify flow attractors and repellers in bulk active
nematics [42, 43] as well as during embryogenesis [44].

Finally, we note that the system studied here may serve
as a simplified model for active living systems, such as
cells or organoids. For that purpose, various model exten-
sions may be desirable, including accounting for the role
of elastic stresses, of extrinsic curvature coupling, or of
chemical cues, which are instrumental in regulating the
cell cortex [45–47].
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versations on braids and topological entropy, and S. H.
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framework [28]. This work was partially funded by Na-
tional Science Foundation Grants CBET-1934199 and
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[9] G. Salbreux, F. Jülicher, J. Prost, and A. Callan-Jones,
Theory of nematic and polar active fluid surfaces, Phys.
Rev. Res. 4, 033158 (2022).

[10] S. C. Al-Izzi and R. G. Morris, Morphodynamics of active
nematic fluid surfaces, J. Fluid Mech. 957, A4 (2023).

[11] L. Metselaar, J. M. Yeomans, and A. Doostmohammadi,
Topology and morphology of self-deforming active shells,
Phys. Rev. Lett. 123, 208001 (2019).

[12] L. J. Ruske and J. M. Yeomans, Morphology of active
deformable 3D droplets, Phys. Rev. X 11, 021001 (2021).

[13] D. Khoromskaia and G. Salbreux, Active morphogenesis
of patterned epithelial shells, eLife 12, e75878 (2023).

[14] F. C. Keber, E. Loiseau, T. Sanchez, S. J. DeCamp,
L. Giomi, M. J. Bowick, M. C. Marchetti, Z. Dogic, and
A. R. Bausch, Topology and dynamics of active nematic

mailto:dstn@ucsd.edu
https://eLifesciences.org/articles/30867
https://eLifesciences.org/articles/30867
https://eLifesciences.org/articles/17807
https://www.nature.com/articles/s41563-022-01194-5
https://www.nature.com/articles/s41563-022-01194-5
https://www.nature.com/articles/nature21718
https://www.nature.com/articles/nphys3876
https://www.cell.com/trends/cell-biology/fulltext/S0962-8924(12)00111-0
https://www.cell.com/trends/cell-biology/fulltext/S0962-8924(12)00111-0
https://journals.biologists.com/dev/article/141/10/1987/45977/Apical-constriction-themes-and-variations-on-a
https://www.Proc. Natl. Acad. Sci. U.S.A..org/doi/10.1073/Proc. Natl. Acad. Sci. U.S.A..1810896115
https://www.Proc. Natl. Acad. Sci. U.S.A..org/doi/10.1073/Proc. Natl. Acad. Sci. U.S.A..1810896115
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.4.033158
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.4.033158
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/abs/morphodynamics-of-active-nematic-fluid-surfaces/A4C1C7913885C2399F5FEE7F4AC63437
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.208001
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.11.021001
https://eLifesciences.org/articles/75878


6

vesicles, Science 345, 1135 (2014).
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